Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034709

RESUMO

The air separation (O2/N2) based on polymeric membranes is critical because it is more energy efficient than traditional methods. Dense polymeric membranes are now the main stay of industrial processes that generate oxygen and nitrogen enriched gas. Though, regular polymeric membranes often fall short of selective pressure demands because O2 and N2 gases have such comparable equivalent diameters. While polymer composites have their benefits, nanocomposite (NCs) allows for the production of high-performance barriers. Utilising Matrimid® 5218 (Matrimid) as the base framework and multiwall carbon nanotube (MWCNT) as the filler, a novel NCs for O2/N2 separation was developed. Both matrimid and MWCNTs were chemically modified quaternization and functionalizing the MWCNTs. The membranes were casted using solution casting with a combination of quaternized matrimid and functionalized multi-walled carbon nanotubes (f-MWCNT). When f-MWCNT was added to quaternized matrimid, it created interfacial compatibility, which increased O2/N2 selectivity and permeability by 65 % and 35 %, respectively. In the current study, increasing O2 diffusivity and O2/N2 solubility selectivity resulted in improved performance, this paves a way for manufacturing innovation.

2.
Biomimetics (Basel) ; 7(4)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36412714

RESUMO

Whether it is a plant- or animal-based bio-inspiration design, it has always been able to address one or more product/component optimisation issues. Today's scientists or engineers look to nature for an optimal, economically viable, long-term solution. Similarly, a proposal is made in this current work to use seven different bio-inspired structures for automotive impact resistance. All seven of these structures are derived from plant and animal species and are intended to be tested for compressive loading to achieve load-bearing capacity. The work may even cater to optimisation techniques to solve the real-time problem using algorithm-based generative shape designs built using CATIA V6 in unit dimension. The samples were optimised with Rhino 7 software and then simulated with ANSYS workbench. To carry out the comparative study, an experimental work of bioprinting in fused deposition modelling (3D printing) was carried out. The goal is to compare the results across all formats and choose the best-performing concept. The results were obtained for compressive load, flexural load, and fatigue load conditions, particularly the number of life cycles, safety factor, damage tolerance, and bi-axiality indicator. When compared to previous research, the results are in good agreement. Because of their multifunctional properties combining soft and high stiffness and lightweight properties of novel materials, novel materials have many potential applications in the medical, aerospace, and automotive sectors.

3.
J Obstet Gynaecol India ; 67(4): 233-236, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28706359
4.
J Obstet Gynaecol India ; 67(3): 153-156, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28546659
5.
J Obstet Gynaecol India ; 66(2): 134-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27046971
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...